

什么是CRMX™¶

CRMX是Cognitive Radio

MultipleXer(具有认知功能的射频多路复用器)的缩写,它是首个能够实时、自动、连续地根据周围环境进行调整的智能无线系统。CRMX经过专门开发,能够满足对于可靠、易用且经济高效的无线照明控制的需求。

CRMXchip

LumenRadio独家提供的CRMXchip

24DMX512正在申请专利,它是世界上最小的无线照明控制解决方案。 CRMXchip以最新的芯片技术为构建基础,涵盖制造商在大批量产品中 添加多功能无线DMX接收器所需的一切。

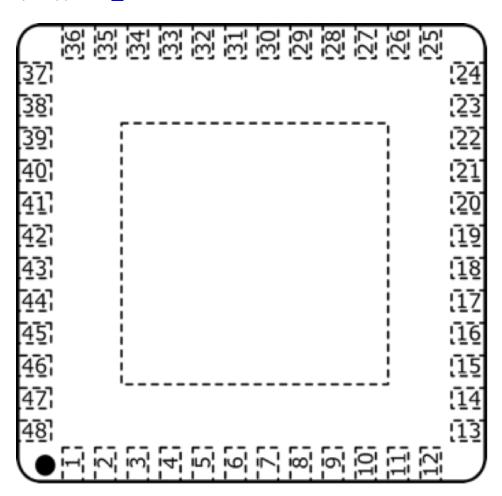
在制造行业领先的无线集成模块方面,LumenRadio拥有多年丰富经验,以此为依托,LumenRadio发明了行业首个CRMXchip,这是一款对开发人员友好的紧凑型芯片,能够轻松集成到产品中,目前该芯片正在申请专利。它为SPI、TTL和(通过外部驱动器)RS485信号提供了接口,其中包括行业首个"DMX窗口"功能,因此无需处理完整的512槽即可在产品内定位起始地址。借助这一创新,能够制造出仅使用无线技术的超低成本产品,且几乎没有DMX处理要求。

如同所有LumenRadio接收器一样,CRMXchip与CRMX发射器完全兼容,并与在G2、G3、G4或G4S

2.4GHz模式下运行的无线解决方案中的发射器完全兼容,使单个无线组件能够最大限度提高固定装置间的兼容性。通过全套的OrCAD、Allegro和DXF符号库,制造商可轻松将CRMXchip添加到其产品中,只需拖放到现有布局上即可。

功能与特性

- 支持ANSI E1.11 DMX512-A和ANSI E1.20 RDM
- 认知共存 动态避开已占用的频率
- DMX保真度和帧完整性
- DMX帧率和帧大小自动感测



- 固定的5 ms端到端延迟
- 自动的向下(W-DMX™G2、G3、G4和G4S)兼容模式
- 6 mm x 6 mm的小尺寸(QFN48)
- 几乎不需要外部组件
- 所有配置数据都存储在非易失性存储器中,数据保留20年
- CRMXchip包含可升级的驱动器,能够适应未来需求
- 无线驱动器升级

引脚分配和引脚功能

本部分介绍引脚分配和引脚功能。

引脚分配9

引脚功能¶

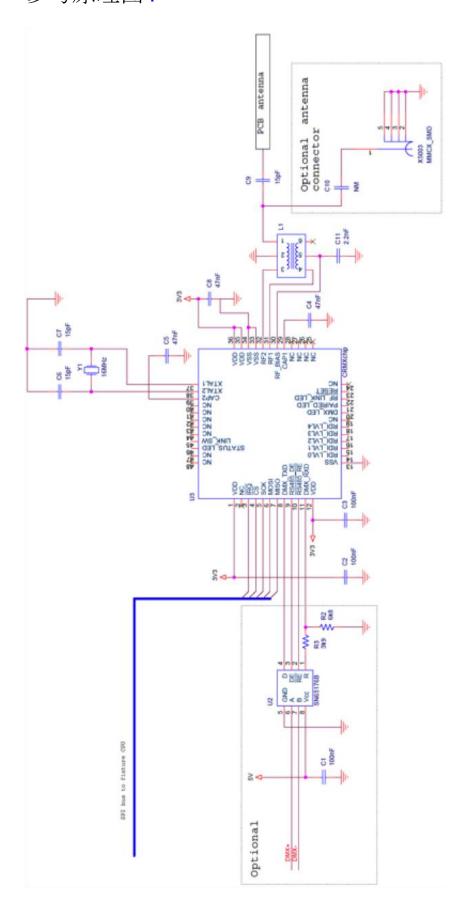
引脚	名称	引脚类型	描述			
1	VDD	电源	电源(3.3V)			
2	N.C.	不连接	请勿连接			
3	IRQ	数字输出	中断信号,低电平有效			
4	CS	数字输入	片选,低电平有效			
5	SCK	数字输入	SPI时钟			
6	MOSI	数字输入	SPI主机输出、从机输入			
7	MISO	数字输出	SPI主机输入、从机输出			
8	DMX_TXD	数字输出	DMX TXD			
9	RS485_DE	数字输出	RS485驱动器控制信号			
10	RS485_RE	数字输出	RS485驱动器控制信号			
11	DMX_RXD	数字输入	DMX RXD(最大3.3 V)			
12	VDD	电源	电源(3.3V)			
13	VSS	电源	接地(0V)			
14	RDI_LVL0	数字输出	射频电平LED			
15	RDI_LVL1	数字输出	射频电平LED			
16	RDI_LVL2	数字输出	射频电平LED			
17	RDI_LVL3	数字输出	射频电平LED			
18	RDI_LVL4	数字输出	射频电平LED			
19	N.C.	不连接	请勿连接			
20	DMX_LED	数字输出	DMX LED			
21	LINKED	数字输出	已连接至发射器LED			
22	RF_LINK	数字输出	射频链路LED			
23	RESET	复位	芯片 复位,低 电平有效			
24	N.C.	不连接	请勿连接			
25	N.C.	不连接	请勿连接			
26	N.C.	不连接	请勿连接			
27	N.C.	不连接	请勿连接			
28	N.C.	不连接	请勿连接			
29	CAP1	模拟输出	电容器连接			
30	RF_BIAS	模拟输出	射频电路偏置			
31	RF1	射频	差分天线连接			
32	RF2	射频	差分天线连接			
33	VSS	电源	接地(0V)			
34	VSS	电源	接地(0V)			
35	VDD	电源	电源(3.3V)			
36	VDD	电源	电源(3.3V)			

引脚	名称	引脚类型	描述
37	XTAL1	模拟输入	16 MHz晶振或16 MHz时钟参考的连接
38	XTAL2	模拟输出	16 MHz晶振的连接
39	CAP2	模拟输出	电容器连接
40	N.C.	不连接	请勿连接
41	N.C.	不连接	请勿连接
42	N.C.	不连接	请勿连接
43	N.C.	不连接	请勿连接
44	N.C.	不连接	请勿连接
45	LINK_SW	数字输入	链路控制开关输入
46	STATUS_LED	数字输出	状态LED
47	N.C.	不连接	请勿连接
48	N.C.	不连接	请勿连接
SLUG	GND	电源	必须接地(0V)

参考设计

参考设计文件

LumenRadio提供完整的参考设计,其中包括PCB布局和PCB设计指南,以帮助简化集成工作。如需更多详细信息,请发送电子邮件至sales@lumenradio。


参考原理图BOM¶

下方BOM中不包括RS485驱动器等可选组件

位置	值	制造商	制造商物品编号	供应商	供应商物品编号
C2、C3	100nF 0402 X7R	Murata	GRM155R71C104KA88D	Digikey	490-3261-1-ND
C4、C5、C	847nF 0402 X7R	Murata	GRM155R71C473KA01D	Digikey	490-6335-1-ND
C6、C7、C	9 15pF 0402 NP0	Murata	GJM1555C1H150JB01D	Digikey	490-3117-1-ND
C11	2n2 0402 X7R	Murata	GRM155R71H222JA01J	Digikey	490-6359-1-ND
L1	-	Johanson	2450BM14A0002T	Farnell	2148533
U3	-	LumenRadio	CRMXchip 24DMX512	-	-
Y1	16MHz	NDK	NX5032GA-16MHZ-STD- CSK-4	Digikey	644-1187-1-ND

参考原理图¶

LED输出

状态LED¶

"状态LED"(*STATUS_LED*)用于指示TiMo模块的状态。该LED指示灯引脚是3.3V输出引脚,能够供应20mA的电流。必须有适当的限流电阻与该LED进行串联。

状态

常闭(0V):未连接至任何发射器

闪烁: 关闭(0V) 100 ms/打开(VDD) 100 ms: 已连接至发射器, 但无有效的射频链路

闪烁: 关闭(0V) 900 ms/打开(Vpp) 100 ms: 有效的射频链路, DMX不存在

常开(VDD):有效的射频链路,存在DMX数据

已连接

"已连接LED"(*LINKED*)用于指示CRMXchip是否连接到发射器,或者是否可供连接。该引脚上的高电平(3.3V)表示已连接状态;低电平(0V)表示CRMXchip未连接。

射频链路

接收器

射频链路LED输出(*RF_LINK*)上的高电平(3.3V)表示,CRMXchip在已连接发射器的范围内,并且存在来自发射器的有效射频链路。

DMX LED

"DMX

LED"(*DMX_LED*)用于指示是否接受到有效的DMX流。高电平(3.3V)表示存在DMX, 低电平(0V)表示不存在有效的DMX。

射频电平

CRMXchip有5个输出信号,用于以条形图的形式控制射频电平LED (*RDI_LVL0* - *RDI_LVL4*)。下表显示了这些信号的操作和建议的LED颜色。这些信号仅用于接收器。

信号名称	建议的LED颜色	当信号质量达到以下条件时打开
RDI_LVL0	红色	低于10%
RDI_LVL1	黄色	20%以上
RDI_LVL2	绿色	40%以上
RDI_LVL3	绿色	60%以上
RDI_LVL4	绿色	80%以上

链路开关和天线选择器

链路开关输入1

链路开关输入(*LINK_SW*)可用于与瞬变(单稳态)按键连接,以帮助实现简单的用户界面。此方案可替代SPI接口来集成到主机器件的菜单系统中。

应使用 $4.7k\Omega-10k\Omega$ 的外部电阻将该信号拉到 V_{DD} ,以**确保正常运行**。

开关输入具有两个功能:控制射频链路或强制进入驱动器更新模式。请参见下表,详细了解开关输入的功能。

功能	条件
取消与发射器的连接	使信号低电平(按下按钮)保持>3秒。
强制驱动器更新模式	在通电期间,保持信号低电平(按下按钮)。

SPI接□¶

通过SPI接口,能够访问CRMXchip的所有功能。此接口由5个3.3V数字信号组成:

- IRQ 中断信号。低电平有效,可通过中断掩码寄存器配置
- **CS** SPI片选, 低电平有效
- SCK SPI时钟输入
- **MOSI** SPI数据输入

• MISO - SPI数据输出

接口描述¶

位和字节顺序¶

SPI总线上的数据逐个输入、先输入最高有效位。所有多字节寄存器数据按大端字节顺序发送。

时钟极性¶

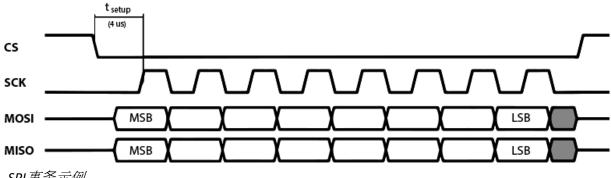
在SCK从低电平跳变至高电平的过程中,数据有效。这也被称为时钟保持高电平有效,其中有效数据位于时钟上升沿。

最大时钟频率¶

TiMo支持的最大时钟频率为2MHz。如果时钟频率超出此限制,可能会导致意想不到的行为发生。

设置时间¶

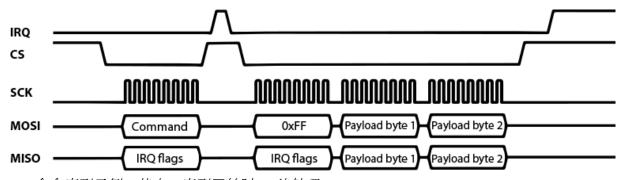
CS信号从高电平跳变至低电平后, SPI从机的设置时间为4 μs。


SPI操作¶

SPI事务¶

所有SPI事务从CS引脚上的高电平至低电平跳变开始。在整个SPI事务期间,CS引脚必须保持低电平。

作为每个事务的第一个字节, IRQ_FLAGS寄存器始终移出。



SPI事务示例

SPI命令¶

除NOP命令以外的所有SPI命令序列由两个SPI事务组成。第一个事务的长度应为一个字节,这 是命令字节。第二个事务是有效载荷。只有在TiMo模块通过IRQ引脚上的高电平至低电平跳变 确认该命令后,第二个事务才能开始。在第二个事务中,将忽略发送至TiMo的第一个字节,但 建议将该字节作为0xFF发送。请参见下图,查看完整SPI命令序列的示例。

注: 必须观察IRQ标志寄存器中的位7。在该位中, "1"表示SPI从模块无法处理当前事务, 必须 重新开始整个命令序列,也就是再次发送命令事务。

SPI命令序列示例,其中,序列开始时IRQ待处理

下表列出了可用的SPI命令。

二进制值 注释

命令

WRITE_REG	01AA AAAA	写入寄存器。AAAAAA = 6位寄存器地址。
READ_REG	OOAA AAAA	读取寄存器。AAAAAA = 6位寄存器地址。
READ_DMX	1000 0001	从DMX_WINDOW寄存器设置的窗口中读取最后接收到的DMX值。
READ_ASC	1000 0010	读取最后接收到的ASC帧。

二进制值 注释

命令

WRITE_DMX	1001 0001	将DMX写入内部DMX生成缓冲区。
NOP	1111 1111	无操作。可用作读取IRQ_FLAGS寄存器的快捷方式。

寄存器映射¶

下表中所有未定义的位应被视为保留位,以备日后使用:与读取无关,以0写入。

请勿读取或写入未定义的寄存器,否则可能会导致未定义的行为发生。

地址(十六	助记符	位编	类	复位	描述
进制)		号	型	值	
00	CONFIG				配置寄存器
	UART_EN	0	R/W	1	使能DMX帧的UART输出(RDM需要)。 0 = 已禁用,1 = 已使能
	RADIO_TX_RX_MODE	1	R/W	-	0=接收器, 1=发射器
	RX_ENABLE	7	R/W	1	使能无线DMX操作。 0 = 已使能,1 = 已禁用
01	STATUS				状态寄存器
	LINKED	0	R/W	-	0 = 未连接, 1 = 已连接至TX(或配对) 写入1以取消连接
	RF_LINK	1	R	0	0=没有射频链路,1=有效的射频链路
	DMX	3	R	0	0 = 无可用DMX, 1 = DMX可用
	保留	4-6	-	-	保留供将来使用
	UPDATE_MODE	7	R	0	0=芯片可操作,1=处于驱动器更新模式
02	IRQ_MASK				IRQ掩码寄存器
	RX_DMX_IRQ_EN	0	R/W	0	使能DMX帧接收中断

地址(十六	助记符	位编	类	复位	描述
进制)	7 1.		型	值	
	LOST_DMX_IRQ_EN	1	R/W	0	使能DMX丢失中断
	DMX_CHANGED_IRQ_EN	2	R/W	0	使能DMX变更中断
	RF_LINK_IRQ_EN	3	R/W	0	使能射频链路状态变更中断
	ASC_IRQ_EN	4	R/W	0	使能替代起始码中断
	保留	6-7	-	-	保留供将来使用
03	IRQ_FLAGS				IRQ标志寄存器
	RX_DMX_IRQ	0	R	0	完整DMX帧接收中断
	LOST_DMX_IRQ	1	R	0	DMX丢失中断
	DMX_CHANGED_IRQ	2	R	0	DMX窗口中的DMX变更中断
	RF_LINK_IRQ	3	R	0	射频链路状态变更中断
	ASC_IRQ	4	R	0	替代起始码帧接收中断
	保留	6	-	-	保留供将来使用
	SPI_DEVICE_BUSY	7	R	0	SPI从机器件繁忙,无法遵守命令。必须重新 开 始命令序列。
04	DMX_WINDOW				状态寄存器
	WINDOW_SIZE	0-15	R/W	512	DMX窗口的长度
	START_ADDRESS	16-31	R/W	0	DMX窗口的起始地址
05	ASC_FRAME				ASC帧信息寄存器
	START_CODE	0-7	R	0	已接收的ASC帧的起始码
	ASC_FRAME_LENGTH	8-23	R	0	已接收的ASC帧的长度(0-512)
06	LINK_QUALITY				射频链路质量寄存器

	助记符	位编		复位	描述
进制)		号	型	值	
	PDR	0-7	R	-	数据包交付率(显示为%)
					0 = 0%, 255 = 100%
10	VERSION				版本寄存器
	DRIVER_VERSION	0-31	R	-	驱动软件版本
	HW_VERSION	32-63	R	-	硬件版本
33	UNIVERSE_COLOR				域颜色寄存器
	RGB_VALUE	0-23	R	_	域颜色的24位RGB值。

中断¶

IRQ引脚用于表示,已通过IRQ_MASK寄存器使能一个(或多个)待处理的中断。IRQ引脚也用于表示,SPI从机已准备好接收正在进行的SPI命令序列的第二个事务。

SPI事务取得成功后,IRQ引脚将始终保持高电平(无效)。如果有任何中断等待处理,或者当芯片准备好接收SPI命令序列中的第二个事务时,将通过IRQ引脚上的高电平至低电平跳变来表示。

RX_DMX_IRQ¶

接收到完整的DMX帧时置位。发出READ_DMX命令序列后清零。

LOST_DMX_IRQ¶

DMX流丢失时置位。这可能是射频链路丢失造成的影**响**,或者如果进入发射器的DMX流终止(例如,与发射器相连的DMX线缆未插电),也可能会出现这一情况。读取STATUS寄存器后清零。

DMX_CHANGED_IRQ¶

接收到完整的DMX帧并且DMX窗口中的任何槽更改了值时置位。发出READ_DMX命令序列后清零。

RF_LINK_IRQ¶

每当射频链路的状态发生变化时置位。这可能是:

• 射频链路丢失

- 射频链路建立
- 接收器与发射器配对
- 接收器取消与发射器的配对

读取STATUS寄存器后清零。

ASC_IRQ¶

接收到完整的ASC帧时置位。读取ASC FRAME寄存器后清零。

DMX窗口寄存器¶

DMX_WINDOW寄存器用于设置DMX窗口滤波功能。请参考第20页的DMX窗口相关部分,了解更多详细信息。

硬件版本¶

硬件版本是32位数字,应转换为字符串。这表示TiMo模块的版本号。例如,十六进制形式的32 位值0x000A0001对应于模块版本"000A0001"。

驱动器版本¶

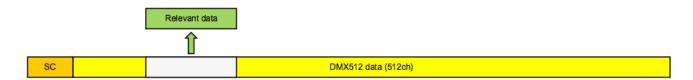
驱动器版本是32位值,应转换为X.Y.Z.Y形式的字符串,其中X是该32位版本号的最高有效字节,Y是最低有效字节。例如,在任何UI或任何书面表示中,32位值0x01000103应表示为1.0.1.3。

DMX接口¶

本章介绍CRMXchip上提供的两个单独的DMX接口。

SPI

DMX数据可通过SPI读取。这适用于Null起始码(NSC)数据和替代起始码(ASC)数据。


DMX窗口¶

通过DMX窗口功能,主机CPU可设置主机关注的一系列DMX槽(即DMX窗口)。由于无需缓冲和解析整个DMX帧,这将减轻主机的负载。

相反,每当DMX窗口内的数据发生变化时,主机会收到来自TiMo的中断请求(DMX_CH ANGED_IRQ)。

RX_DMX_IRQ不受DMX窗口设置的影响。

/text in picture/

相关数据

DMX512数据(512ch)

通过SPI读取DMX数据

通过SPI读取DMX数据时,可读取的最长数据块为128字节。如果需要读取超过128字节的数据,必须通过执行多个连续READ_DMX命令序列来完成。

达到DMX窗口末端时,或者有任何其他命令发送到**SPI**从机时,内部数据块计数器会复位。

请注意,目前不支持通过SPI接口收发RDM起始码消息,因此RDM通信应通过UART DMX/RDM接口进行(引脚8、10、11和12)。

UART DMX接口 9

CRMXchip模块的UART DMX接口由4个数字信号组成,这些信号可用于连接符合ANSI E1.11 DMX512-A标准的RS485驱动器IC,以实现与DMX512-

A兼容的接口。请参考第7页上的原理图示例,详细了解如何连接RS485驱动器IC。

DMX接口还可用于直接连接到主机CPU等的CMOS/TTL电平。

注: RXD引脚上的信号不得超过3.3V!如果使用5V信号,则必须使用电平转换电路。请参考第7页上的原理图示例,详细了解如何使用5VIC。

DMX和RDM端接与线路偏置¶

DMX和RDM端接与线路偏置电路不作为CRMXchip的一部分提供(因为该数据在TTL电平提供)。对于每个特定应用和器件,该电路由器件制造商按需提供。

端接和线路偏置电路要求应遵循"ANSI E1.20 - 2006/基于USITT DMX512网络的娱乐技术-RDM-远程器件管理"或更高版本。

重要提示: 所有RDM实现必须进行偏置。

DMX帧率和帧大小¶

CRMXchip将自动感测DMX帧率和帧大小,并接受符合USITT DMX-512(1986和1990)与DMX-512-A标准的所有变体。

最小DMX帧大小为1个槽,最大为512个槽。

对于正常操作,最小DMX帧率为每秒0.8个帧,最大为每秒830个帧。

低于**每秒**0.8个帧的输入帧率,即自上一个帧开始以来已过去超过1.25s,将被视为DM X丢失。在接收器模式下,TiMo模块将RS485驱动器IC设为高阻态/三态模式,直到检测到另一个DMX帧。在发射器模式下,TiMo将使RS485驱动器保持输入模式。

CRMX将在系统中传输DMX,维持输入帧率和帧大小,但超出DMX 512-A标准允许范围的帧率除外。

超过每秒830个帧的输入DMX帧率将以每秒830个帧的速度在系统中传输,以确保DMX输出符合DMX512-A标准。

DMX起始码帧<mark>•</mark>

如果DMX数据包带有除DMX默认0x00(也称为Null起始码或NSC)和RDM起始码(0xC C)以外的起始码,则将在系统中传输,并且应遵守与null起始码数据包相同的规则和限制。此类帧被称为替代起始码帧或ASC帧。

RDM起始码帧¶

由于CRMXchip不支持RDM,因此CRMXchip将忽略所有带有起始码0xCC的数据包。

替代起始码帧

ASC(替代起始码)帧可从SPI接口或DMX/RDM接口单独读取。通过SPI, ASC_FRAM E寄存器包含有**关最后收到的**ASC帧的基本信息。本寄存器中提供的信息是起始码和长度(槽数)。

通过SPI读取ASC数据¶

通过SPI读取ASC数据时,可读取的最长数据块为128字节。如果需要读取超过128字节的数据,必须通过执行多个连续READ_ASC命令序列来完成。

达到ASC帧末端时,或者有任何其他命令发送到SPI从机时,内部数据块计数器会复位

版本

版本

本部分介绍可从VERSION寄存器读取的数据。

芯片版本

芯片版本是32位数字,应转换为HEX字符串。这将与封装上标记的芯片版本号匹配。例如,值0x000A0001对应于芯片版本"000A0001"。

驱动器版本 9

驱动器版本被解释为x.y.z.v, 其中x是该32位版本号的最高有效字节, v是最低有效字节。

射频驱动器更新

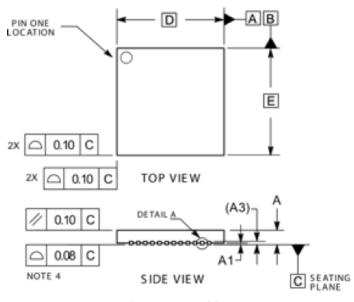
射频驱动器更新¶

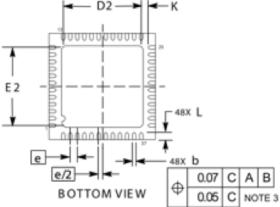
CRMXchip中的射频驱动器可更新。更新操作可通过SPI从固定装置中的主机处理器执行,可进行无线更新,或者可通过DMX接口执行。

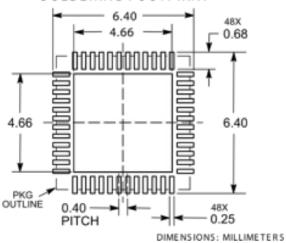
有关更新的详细信息,请联系支持团队。

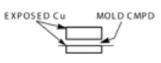
规范

规范¶


_	<u> </u>
ш	<i>=</i> ■
ш	_ •
-	V II


符号	参数	_最小值	典型值	最大值	单位
V_{DD}		3.0	3.3	3.6	V
I _{DD}				_40	mA
TA	工作温度	-20		75	°C
VIL	_输入电压逻辑低电平	0		0.9	V
V _{IH}		2.5		3.3	V
I _{LED}	 _LED引脚上的最大电流驱动 			5	mA
f_{range}		2402		2480	MHz
RX _{sens}	接收器 灵 敏度(0.1% BER)		-93		dBm
Z _{RF}	_在匹配网络中看到的来自天线 引脚RF1和RF2的差分阻抗。		15+j*85		dBm
DMX _{size}	_DMX帧大小(不包括起始码)	0		512	
DMX _{rate}		0.8		830	fps


机械¶



SOLDERING FOOTPRINT*

DETAIL A ALTERNATE CONSTRUCTION

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSIONS: MILLIMETERS.
 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS	
DIM	MIN	MAX
Α	0.80	0.90
A1	0.00	0.05
A3	0.20 REF	
b	0.15	0.25
D	6.00 BSC	
D2	4.50	4.70
E	6.00 BSC	
E2	4.50	4.70
е	0.40 BSC	
K	0.20 MIN	
L	0.30	0.45

/TEXT IN PICTURE/

PIN ONE LOCATION	引脚1位置	
TOP VIEW	顶视图	
DETAIL A	细节A	
NOTE 4	注4	
SEATING PLANE	底座面	
SIDE VIEW	侧视图	
BOTTOM VIEW	底视图	
NOTE 3	注3	
SOLDERING FOOTPRINT*	焊接尺寸*	
PKG OUTLINE	封装轮廓	
0.40 PITCH	0.40间距	
DIMENSIONS: MILLIMETERS	尺寸:毫米	
EXPOSED Cu	外露的铜	
MOLD CMPD	MOLD CMPD	
DETAIL A	细节A	
ALTERNATE CONSTRUCTION	替代结构	
NOTES:	注:	
1. DIMENSIONING AND TOLERANCING PER	1.尺寸和容差遵循ASME Y14.5M, 1994标准规	
ASME Y14.5M, 1994.	范。	
2. CONTROLLING DIMENSIONS: MILLIMETERS.	2.控制尺寸:毫米。	
3. DIMENSION b APPLIES TO PLATED TERMINAL	3.尺寸b 适 用于电镀端子,在距 离 端子尖端	
AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL TIP	0.15到0.30 mm之间进行测量	
4. COPLANARITY APPLIES TO THE EXPOSED PAD	4.共面性适用于裸露焊盘和端子。	
AS WELL AS THE TERMINALS.		

产品标记

应对包含CRMXchip的产品进行标记,以便于识别产品中是否包含CRMX技术。 LumenRadio可提供"CRMX by LumenRadio"原图。

by LumenRadio

在营销材料中,射频链路应被称为"无线链路"、"CRMX无线DMX"、"内含CRMX技术"、"由CRMX提供技术支持"或采用类似措辞。可在其他正文文本中说明这是DMX接收器。对于使用TiMo无线模块或其他CRMX技术的产品,在任何相关材料中,不得将无线链路称为"W-DMX"、"WDMX"或仅称为"无线DMX"。

产品文档和菜单系统¶

在文档和菜单系统内提及CRMXchip和相关行为时,系统应被称为"无线链路"和/或 "CRMX"(或其派生词),不得被称为"W-DMX"、"WDMX"或采用类似措辞,也不得仅 称为"无线DMX"。接受"CRMX无线DMX"的说法。

下表包含建议使用的术语及定义。

术语	定义
CRMX无线链路	用于描述CRMX射频系统的顶层术语。
已连接	CRMX射频系统已与兼容发射器连接。
未连接	CRMX射频系统正在等待来自兼容发射器的连接。

徽标联合¶

在您的产品中使用CRMX技术即表示您成为LumenRadio的重要合作伙伴之一。我们的 网站和目录中收录了大量合作伙伴徽标,预计您的徽标也将包含在其中。可向营销联系人员发送营销信息、徽标和案例研究,以便添加到未来的营销材料中。

验证与测试

设计验证¶

LumenRadio在瑞典设立了一个完整的射频实验室,可提供设计验证和测试服务,请联系LumenRadio进行咨询。

生产测试¶

所有CRMX模块在发货之前,均经过出厂测试。然而,作为您的产品整体测试流程的一部分,建议开展一定级别的测试。LumenRadio将非常乐意提供生产测试方面的建议,请联系LumenRadio进行咨询。

合规性信息

合规性信息¶

FCC信息¶

由于CRMXchip是仅包含接收器的产品,因此不需要FCC认证和标记。

CE

CRMXchip符合欧盟射频设备指令的基本要求(2014/53/EU)。该设备符合ETSI EN 300 328 V2.2.2射频性能一致性标准。

其他合规性事宜¶

对于其他本地合规性法规(CE、UL、CSA、SRRC、C-Tick等),**您**作为产品制造商负责确保完成所有必需的合规性测试。LumenRadio非常乐意提供合规性测试方面的建议,请联系LumenRadio了解详细信息。